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Abstract

We suggest a new approach to databasc updates, in which a database is treated as a collection of
theories. We investigate two issues: simultancons multiple update operations, and equivalence of databases
under npdate operations.

1. Introduction

One of the main problems in database theory is the problem of view updating. i.c., how to translate an
update on a user view into an update of the database ([BS], [CA], [DB], [J]. K¢}, [Kl], [O]). The problem
is that in general there is no nnigue database update correspouding to the view update. Aunother problem
is that of updating a database that must satisfy certain integrity constraiats ((NY], [T]). The ditficulty here
is that the database after the update may no longer satisfy the constraints, in which case we may have to
modify other things in the database. to ensure that the integrity constraints still hold. As in the case of view
updates, there is not necessarily a unique way to modify the database so that the constraints still hold.

Fagin et al. [FUV] suggest that the appropriate framework for studying the semantics of updates is to
treat the database as a consistent sct of sentences in first-order logic, i.e.. a theory. A theory is a description
of the world, but is not necessarily a complete description: rvery model of the theory is a possible state of
the world. Thus the database can be viewed as an exact description of our knowledge about the world. This
framework was propounded in other papers (e.u., [Kol, [NG]. [R]). ‘

When one tries to update a theory by inserting or deleting some =rntence, several now theorics can
accomplish the update. Fagin et al. [FUV] argue that we should try to minimize the change that is needed
to accomplish the update. Unfortunately, cven under this minimality constraint, there may be several
theories that accomplish the update. with no reasonable way to choosc between them. One approach to this,
suggested in [FUV], is to define the result of the update to be the disjunction of all the possible theories that
accomplish the update with minimal chauge. Two difliculties with this approach are that it requires us to
have sentences of a rather complicated syntax, e.g., disjunctions of tuples in a relational database, and that
the nunber of seutences in the database may grow donbly exponentially with each update.

The fact that several theories can accomplish a given update motivates an alternative approach: viewing
the database as a collection of theories rather than a single theory. We call a collection of theories a fock.
The advantage of this approach is that it is easier to deal with the multiplicity of Hocks than with the
multiplicity of theories. With the new approach, the sentences we get are of no greater complexity than
those that were in the database or those that were inserted, and the number of seutences does not grow as
fast as before.

In this paper, after presenting the two approaches to updates, databases is theories vs. databases as
flocks, we investigate two basic issues. TFirst we study batel operations, in which many sentences, rather
than a single seutence, are inserted or deleted simultancously. We then observe that two theories or tlocks
that are logically equivalent may not be cquivalent after an update is performed, We give necessary and
sutficient conditions for equivalence forever, i.c., equivalence that is preserved nuder updates.
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2. Updates of Theories.

Our basic units of inforination are sentences, i.c. formulas withont free variables. We do not allow
inconsiztent sentences, and we do not allow the deletion of valid sentences, A theory is a consistent set of
sentences. We shall use the letters § and T to denote theories, and the letters o and 7 to denote sentences.

We start by describing the framework developed in [FUV].

[." Definition 1:

1. A theory T accomplishes the deletion of @ from S U T B 0.

2. A theory T accomplishes the inscrtionof o into S if o € T.

- Definition 2: Let Ty. Ty and T be theories.

’ 1. Ty has fewer inscrtions than Ty with respect to TH Ty, - T C T, -T. 3
2. Ty has fewer delctions than T with respect to Tif T =Ty C T — Ty,

_ ; 3. T has fewer changes than Ty, with respect to T, if T has fewer deletions than Ty, or Ty and Ty have
the same deletions (T ~ Ty = T ~ T2) and T has fewer insestions than Ts.

p Definition 3: A theory T accomplishes an update u of S minimally if T accomplishes u and there is no
& theory T’ that accomplishes n and has fewer changes than T with respect to S.
Theorem 1: ([FUV]) Let § and T be theories and let ¢ be a sentence. Then
1. § accomplishes the deletion of ¢ from T minimally iff § is a waximal subset of T that is consistent
with ~o.
2. S U {o} accomplishes the insertion of ¢ into T minimally iff § is a maximal subset of T that is
h cousistent with o. §
{ There could be many theorics that accomplish an update minimally. Suppose that Ty, ..., T, acc the
theories that accomplish an update u of § minimally. It is argued in [FUV] that the result of u should be a
theory T such that i .
Mod(T) = |J Mod(Ty),
1<i<n
- 1
P_- where Mod(S) is the set of models of the theory S. _—
3 Definition 4: Let Ty, ..., T, be theorics. The disjunction of these theories is defined to be the theory 1
L . ) M .
S v Ti={nv:---vrn | lneT,1<i<n}.

1<i<n

It is shown in [FUV] that -
Mod( \/ T)= |J Mod(T0).
1<i<n 1isn
Thus they suggest that if Ty, ..., T, are the theories that accomplish an update u minimally, then the reanlt }
of u should be V, ., T:.
- 4
3We use .. to deuote inclusion, and ¢ to denote proper inclusion.
s
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3. Flocks. | ' “&

In this section. we shall deseribe another approach to updates, namely using collections of theories. We
call these coliections flocks. The intuitive idea is that since we have many possible theories that accomphsh
an update minimally, we reflect this ambiguity by keeping all these theories,

Definition 5: A flock S is a set of theories. The models of 8 are
Mod(S) = |J Mod(3).
se8

To update a flock we have to update cach theory in the flock. Formally:

Definition 6: Lot S = {Sy,...,5,)} be a lock. A flock T = {T},...,T,} accomplishes an update u of 8
minimally if T; accomplishes the update of §; minimally, for | <i < n.

Again, there could be many {flocks that accomplish an update minimally. Suppose that Ty, ..., T, are
the flocks that accomplish an update u of 8 minimally. As in [FUV], we contend that the result of u should
be a Hock T such that

Mod(T) = |J Mod(T,). :

1<i<n
It is casy to show that the Aock J, ..., T: has this property. This motivatcs the following definition:

Definition 7: Let S be a flock, and {et Sy, ..., S, be the flocks that accomplish an update « of 8 minimally.
Then the result of « is the Hock U1<i_<_n S:.

Lemma 2: Let S = {S;,...,5,} be a flock. For each theory §;, let Sk ... ']‘ be the theories that
accomplish the update u of §; minimally. Then the result of applying u to S is t.hc ﬂock

S'={S¥|1<ig<n,L<k< )

Proof: Let 8’ be the result of the update. If § € 8§’ then, by Decfinition 7, § € S, for some S; that
accomplishes the update minimally. But then, by Definition 6, § accomplishes the update of some §; € 8§

winimally, i.e., § is one of the theories S}, ..., §7.

Now let § = S¥ for some k, 1 € k < j;. Then § accomplishes the update u of §; minimally. Tor cach j,
L1 < j<n,j#1,let S7 be any theory that accomplishes the update u of §; minimally. Then. by Definition 6,
the flock {S*,...,8771,5,878, ... §™} accomplishes the update u of § minimally and so, by Definition 7,
cach theory in this flock is in 8'. In particular, S € S'. @

In other words, to update a Hock, econsider cach theory in the flock in turn. Take all theories that
accomplish the update minimally and put them in the new flock.

Note that if a flock is a singlcton, i.e., coutains exactly one theory, its modcels as a theory and as a fock
are the same. Also, the flock that we get after applying an update to such a tlock has the same models as
the theory we get by applying the update to the single memnber of that flock, as the following leinma shows.

Lemma 3: Let 8 = {$} be a singleton flock, and » an update. If §' is the result of applying the update
to the theory S. and 8’ is the result of applying u to the flock S. then 8’ and S' have the same models.

Proof: By Lemina 2, the result of applying u to S is the flock 8" = {8; | 1 < ¢ < j}. where Sy, ..., S;
are the theories that accomplish the update u of § minimally. Similarly, the result of applying u to § is the

3




theory 8’ = V,,<; Si- By Definition 5 and the comments at the end of Section 2, §’ and §” have the same
models. §

Even though the result of an update has the same wodels under both approaches, under future updates
their results may diffier, as the following exatnple shows.

Example 1: If we start with the flock {{A. B}}, and delete A A B from it nsing the flocks approach, we
take all the maximal subtheorics of {A, B} that do not imply A A B, namely {A} and {B}. That is, the
resulting tlock is {{A}. {B}}. If we now delete A and then delete B, we end up with the flock coutaining
only the empty theory, i.c., anything is a model of the result. On the other hand, if we start with the theory
{4, B}, and delete A A B, we get the theory {AV B}. This has the same models as the flock {{A}, {B}}.
However if we now delete A and then delete B, we still have the theory {A v B}, which does not have the
same models as the empty theory. @

In practice, singleton flocks are the most likely to be used as the starting state of the database (in fact,

- the starting state will probably be {#}). It would be interesting to characterize the flocks that are obtained
- from singleton flocks by a sequence of update operations. Another interesting question is the comparative
™ merit of the two approaches: theorics vs. flocks. We know that these approaches yicld different results for -

the same updates. Which one of them is more correct?
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4. Batch Operations.

Batch operations consist of deleting or inserting several sentences simultancously.

Deflnition 8: Let 8 be a theory and let £ be a set of sentences. We say that 8’ accomplishes the deletion
of T from 8 if §' £ o for cach 0 € E. We say that $' accomplishes the inscrtion of L into S if £ C §'.
We say that 8’ accomplishes an update x of § minimally if §' accomplishes 1 and there is no theory that
accomplishes u with fewer changes.

The above definition is non-constructive in the sense that it does not explicitly say how to find those the-
ories that accomplish an update minimally. The following theorem gives a constructive cquivalent condition,
which generalizes Theorem 2.

Theorem 4: Let S and T be theories and T a set of sentences. Then

1. S accomplishes the deletion of E from T minimally if S is a maximal subset of T such that SU {~o}
is consistent for all ¢ in T,

2. SUZ accomnplishes the insertion of L into T" minimally iflf § is a maximal subset of T that is consistent
with X.

Proof:

1. If S is a maximal subset of T that is consistent with ~# for cvery o € &, then clearly § accomplishes
the deletion of T from S. Assume that § does not accomplish the deletion minimally, i.e., there is
a theory S’ that accomplishes the deletion with fewer chauges than & with respect to T. If S' has
fewer deletions than §, then T~ 8’ ¢ T —- 8. But then S/ N T is also consistent with —~a, for all o in
T, contrary to the maximality of §. Therefore §’ must have the same deletions as § with respect to
T. Clearly S’ cannot have fewer insertions than 8, since S has no such insertions at all.

If S accomplishes the deletion minimally, it must be consistent with —o for every ¢ € E. It is also
clear that § C T since if it contained sentences not in 1 we could remove them and et a theory that
accomplished the npdate with the same deletions and with fewer insertions. If § is not a maximal
subset of T that is consistent with all the —a’s, then theve is a theory that accomplishes the update
with fewer deletions than S.

2. Let S be a maximal subset of T that is consistent with L. 5§ U T clearly accomnplislies the insection
of £. Suppose that $' accomplishes the update with fewer deletions, and let § = ' N T. Then
T~-8"=T-8"CT-3S8, and therefore § C §” C T and §” is consistent with L— contradicting the
maximality of §. Clearly, no theory can accomplish the inscrtion with the same delelions and with
fewer insertions than S U L, since the only inscrtions are .

If S UL accomplishes the insertion of ¥ minimally, we must have § C T and § consistent with I,
If § is not a maximal subset of T that was consistent with L, then we can Bind S’ consistent with
¥ that satisfies § € §' € T. But then 8’ U T accomplishes the insection with fewer deletions -

contradiction.

Using Definition 8, we can define the result of batch updates both for theories and for flocks. For
theorics, we define the result of the update to be the disjunction of all the theorics that accomplish the update
minimally, as in Definition 4. For flocks, we nse Definitions ¢ and 7. Namely, to update a flock consider cach
theory in the Hock in turn, take all theories that accomplish the npdate of this theory miuimally, and put
them into the new flock. In the sequel, we teserve the teem update (respectively, deletion, insertion) for the
case where a single sentence is deleted or inscrted, to distingnisl it from batch update (respectively, batch
deletion, batch insertion), where a set of sentences is deleted or inserted.

5
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The following example shows that the batch deletion of L does not always give the same result as
deleting the sentences in ¥ one by one.

Example 2: Delcting {A, B} from the theory {A.B, A = B} results in the theory {A = B}. If, ou the
other hand, we delete first A, we get the theory { BV (A4 = B)}, which remains unchanged after deleting .
Deletiug first B and then A gives us the theory {AV (A = B)}.

Deleting {A, B} from the Hock {{4, B,A = B}} results in the flock {{A = B}}. If, on the other hand,
we delete first A we get the Hock {{B},{4 = B}}, aud if we then delete D we end up with the flock
{0,{A = B}}. This is different from the Hock {{A = B}}, since the union of the models of the first flock
consists of all possible structures, whercas the models of {{A = B}} are only those models in which 4 and
D are equivalent. |

Similarly, the insertion of ¥ does not give the same result as inserting the sentences in T one by one.
The following theorem shows, however, that for flocks, batch insertions can be simulated by single updates.

Theorem 5: Let & = {oy,...,4,} be a consistent sct of sentences and let 8 be a flock. Then the result of
inserting £ into 8 is the same as first deleting ~(og1 A - - A 7,,) and then inserting the o's one by one.

Proof: A theory S is consistent with £ iff S B —(a A+ Ar,). Let T be the result of deleting =(g A+ - -Acy,)
from S. We claim that 8/ = {TUZ | T € T} is the result of inserting ¥ into 8.

First. let T be a theory in T. It accomplishes the deletion of (o A +-- A g,) from some S € S minimally.
We claim that TU X accomplishes the insertion of T into § minimally. It is clear that TU Y accomplishes the
insertion of &. If T’ accomplishes the insertion with fewer deletions that TUZ, then T' also accomplishes the
deletion of ~(a; A --- A a,,) from § with fewer deletions than T with respect to S, a contradiction. Clearly
no theory can accomplish the inscrtion of £ into § with fewer insertions that TU X with respect to S, since
the only inscrtions here are the scutences of £. This shows that each theory in §' is in the result of inserting

T into 8.

Now let T be a theory in the result of inserting T into S. i.c.. T accomplishes the insertion of L into some
S € 8 minimally. Let 7 = T — (£ - 8). Then T" is consistent with L and so T’ accomnplishes the delction of
~{m1A--Aa,) from §. U some theory S’ accomplishes the deletion with fewer deletions than T7 with respect
to 8, then 8’ U E accotnplishes the insertion of ¥ with fewer deletions than T, a contradiction. Therefore,
T' accomplishes the deletion of =(ay A -+ Aoy) from 8 minimally, i.e., ' € T, and therefore T = T'U L is
inS. §

Remarks:
. The theorem does not hold for theories. For cxample. let S be the theory {4, B}, and T the sct
{(A # B) A C}. Then the rcsult of inserting T into S is the theory
{AV((A#£ B)AC).BV((A£B)AC).AV B.(A%D)AC).
Ou the other hiaad. the result of deleting (A = B) v -~ fromn 8 is the theory {A vV B}, and if we
then just insert (A # B) A C, we get the theory {AV B, (A # B) A C}.

2. There are batch deletions from Hocka that cannot be sitnulited by any sequence of single updates.
For example, if we delete {A, B} from the ock {{Av B.AV B, -4 v B}}, we get the Hock
{{Av B},{AvV ~B,-Av B}}. It is shown in [Ku] that the latter fock cannot be obtained from
any singleton flock by gingle updates.
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5. Equivalence Forever.

5.1. Definitions.

. Two theories or flocks are logically equivalent if they have the same models. Nevertheless, this does
not guarantee that they will continue to have the same models after any sequence of updates, as the next
example shows.

Example 3: The two theorics {B} and {B. AV B} are logically cquivalent. However, if we delete B from
both of them we get the nonequivalent theorics § and {AV B}.

ﬁ The two Hocks {{B}} and {{B, AV B}} are logically equivalent. After deleting I from both of them we get
the noucquivaleut Hocks {#} and {{AV B}}. B

We say that two theorics or flocks are cquivalent forever if after applying any sequence of updates
we always get two theorics or flocks that have the same models. In the rest of this section we supply
characterizations for equivalence forever.

.' We use the following definition. -

Definition 9: We =ay that a theory § covers a theory T iff every sentence 7 in T is logically equivalent to
a conjunction o4 A - A g, of sentences in S. (An empty conjunction is by convention valid.)

5.2. Equivalence Forever for Theories.

Theorem 6: Let S and T be finite theorics. The tollowing are equivalent.
1. S and T are equivalent forever under updates.
2. § and T are equivalent forever under batch updates.
I 3. § and T are cquivalent forever under deletions.
4. § and T arc equivalent forever under batch deletions.
5. Each subsct of S is logically cquivalent to a subset of T, and vice-versa.
6. S covers T, and vice-versa.

. Proof: (2) = (1), (2) = (4), (4) = (3), (5) = (6) and (1) => {3) arc obvious. We shall show (3) = (6),
(6} = (3) anud (5} = (2).

(3) = (6) We shall prove the following statement, which we call statement (*), inductively on k:

(*) Let T, and T, be finite theorics that are cquivalent forever under deletions. [f there is a
| structure M that obeys r € T} and that also obeys exactly k sentences in Ty, then 7 is equivalent
R to a conjunction of sentences in Ts.

Statement (*) implies (3) = (6). For, let $ = T and T = T4, and let 7 be an arbitrary member
of §. Let M be a structure which obeys 7. (There is such a structure since we deal only with
consistent sentences.) Siuce T is finite. there is some & (possibly & = 0) such that M obeys exactly
k sentences in T. Then statement (*) tells us that 7 is equivalent to a conjunction of scutences in 4
T, as desired. 1

If T, and T, are finite theories and if M is a structure, it is convenient for us to detine #(M, Ty, T2) T
to be the sentence

V{a | o € Ty U Ty and M violates o}.
7 .

[P |




(6) = (5)

(5) = (2)

Y - -~

It is easy to sce that there is a single maximal theory which results from deleting this sentence
from T\. namely, the sct of all sentences in Ty which are teue in M. Of course, the same is true
about Tz. We ace now reiudy to prove statement (*), by induction on k.

k = 0: In this case, M obeys no sentence in Tz, Let us denote by T| (respectively, T3) the resuls
of deleting o(M. T, T2) from T (respectively, T2). Since M obeys no seatence in Ta. it follows
that T3 is the empty theory, which every structure obeys. Since T| and T3 are equivalent (by
equivalence forever of T and T: under deletions), it follows that T{ consists of valid seutences.
But 7 belongs to T}, since M obeys 7. [t follows that 7 is valid, and is therefore equivalent to a
coujunction of sentences in Ty.

Inductive step: Assume that the inductive hypothesis (*) holds, with &’ substituted for k. for every
k' < k, and for cvery choice of T\ and T3. Let Ty and T be finite theories that are equivalent
forever under deletions, and let M be a structure which obeys 7 € T, and which also obeys exactly
k sentences in T. We must show that r is equivalent to a conjunction of sentences in Ty

Let us denote by T} (respectively, T3) the result of deleting o(M. Ty, T:) from Ty (respectively,
T2). Then T is a subset of Ty which contains 7, and 7} is a subset of T, which contains exactly
k sentences (namely, those sentences in T3 which are true in AM). By eqnivalence forever of T
and T2 under deletions, we know that T) and T3 are also equivalent forever under deletions. In
particular, T{ and T3 are equivalent, and so 7§ implies 7. If also v were to imply Tj (that is,
if T were to imply every member of T3). then we would be done, since r would be cquivalent to
the subset T3 of T, So we can assume that v does not imply T}, Therefore, there is a structure
M’ which obeys 1 but not T3, Let &/ be the number of members of Ty which M’ obeys. Then
0 < k' < k, since T; contains k scntences, not all of which M’ obeys. By inductive hypothesis (*},
where T{, T4, and &’ play the roles of Ty, Ty, and k respectively, it follows that 7 is equivalent to
a conjunction of members of Ty, and hence of Ty,

Let §' be a subset of S. For each o € §’, Iet T, be a subset of T such that ¢ is cquivalent to the
conjunction of members of T,. Let T be the union of all sets T, where ¢ € 8'. We now show that
S’ is cquivalent to T'. If r € T/, tind ¢ € S’ such that 7 € T,,. Then o implics 7, s0 §' implies 7.
Henee, 87 implies T'. Couversely, assumne that o € §'. Then T, itaplics o, and so T’ implics o.
Hence, T implices 87,

Assume that (5) holds. It suffices to show that if S (respectively. T} is the result of applying
a batch update u to § {respectively, T), then every subset of 51 is equivaleut to a subsct of T
and vice versa.

Let the update u be the deletion of £ (we shall remauk at the end how to wodify the proof to deal
with the case where u is an insertion.) Let $' be a maximal subset of S thal is consistent with
-0, for every o C L. By assmnption, there is a subsct of T that is equivalent to S*. Let T? be a
maximal such subset of T. We now show that T is a maximal subset of 7' that is consiztent with
-a, for every 0 € . Cleacly T is consistent with every —a. since T is equivadent to 8, aud §*
is consistent with every -~a. If T' is not maximal, then tind T € T consistent with every o such
that T* C T'. By definition of T*, we know that T* iz not equivalent to T'. By hypothesis, there is
a subset of § that is equivalent to T'; let 8’ be a maximal such subset. Since ' =T T' = §',
it follows that §’ implies S7, and so 8’ U §" is equivalent to §'. By maximality of §', it follows
that S' C §'. But S' # §', since ST =T £ T' = §’'. Hence, $T C &', Since T’ is consistent
with ~o, for every ¢ € I, and since T' = 8', it follows that §' is consistent with cvery -o. This
contradicts maximality of §*.

Let us call each maximal subset of S (respectively, T) that is consisteut with every -0 an S-
candidate (respectively, a T-candidate). We have shown that for cach S-candidate 8' there is a

8
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T-candidate T! such that 8t = T*. Similarly, for each T-candidate T' there is an S-candidate S'
. such that S' = T°. Furthermore, it is casy to show that this correspondence is bijective. That is,
o if 81, ..., 8, are all of the distinct S-candidates, then there is o listing Ty, ..., Ty, of all of the
.‘ distinct T-candidates such that §; = T, for 1 € i< n.

The result S of the update on § is the theory V{Si | | € i < n}. and analogously for TV, We
shall show T covers S{1). As in the proof that (4) = (3), it then follows that every subset of
50} is equivalent to a subset of (1), as desired.

Let «*be a member of S(). We know that « is of the form ay V-V ag, where a; € S, for
1 < i € n. By assumption, there is a subsct T] of T which is equivalent to «;. Since a; € S; = Ty,
it follows that T; implies a;, aud hence T; imnplies T!. So by maximality of T;, we know that
T!CTi Let Qbetheset {r,v---vr, e T for 1 <i<n}. Then Q C T, Let r be the
conjunction of members of Q. The proof is complete if we show that a is cquivalent to 7. Let 7!
be the conjunction of members of T/, for 1 < i < n, and let v be the disjunction #{ V --- V rl,.
Clearly r] is equivalent to a,, since both are equivalent to T} (1 € i < n). Hence, 7 is cquivalent
to a. But 7 is the conjunctive normal form of v, and consequently 7 is equivalent to a.

We close by remarking how the proof should be modified to deal with insertions rather than
deletions. Assume that the updale u is the insertion of L. Let us call each maximal subset of S
(respectively, T') that is consistent with £ an S-candidate (respectively, a T-candidate). Just as
before, it follows that if §), ..., §, are all of the distinct S-candidates, then there is a listing Ty,
..y Ta of all of the distinet T-candidates such that S; = T;, for 1 <1 < n. The result (1) of the
update on S is the theory V{S; UL | I €i < n}, and analogously for T(1), Let « be a member
of §11), We know that a is of the form a; V -V a,, where a; € S;UE, for L < ¢ < n. If no
a; is in &, then the proof proceeds as before. Assume now that some a; is in £. For simplicity
in description, assume that a; isin I, but a; € S; for2<i<n (othcrwis'e there is an obvious
modification in the proof). As before, find a subset T! of T which is equivalent to ay, for { > 2.
Let @@ be theset {ay; VeV -V, |7, € T/ for 2 < i < n}. Then @ € 7'M, and, as before, a is
equivalent to the conjunction of members of Q.

2

5.3. Equivalence Forever of Flocks.

We do not have, at present, a simple necessary and sufficient condition for cquivalence forever of general
flocks. However, for singleton Hocks, i.e., flocks that contain only one theory, we can prove an analogue to
Theorem 6.

Theorem 7: Let S and T be finite theories, and let 8 = {S} and T = {T} be singlcton Hocks. The
following are equivalent.

1. 8 and T are equivalent forever under updates.

. S and T are equivalent forever nnder batch updates.
. 8 and T are equivalent forever under deletions.

2
3
4. 8 and T arc equivalent forever under batch deletions. ]
5

. Each subset of § is logically equivalent to a subset of T, and vice-versa. 1

6. S covers T and T covers S. - -

Proof: (2) => (1), (2) = (4), (4) = (3), (5) = (6) and (1) => (3) arc obvious, and (G) = (5) was proven in 1

Theorem 6. We now show (3) = (6) and (6) = (2). )
9




(3) => (6)

(6) = (2)

Assume that S does not cover T. Then there is a sentence 7 in T that is not logically equivalent to
any conjunction of sentences of §. Let £ be the set of sentences in S U T that are not iwplicd by
7. Let R be he the set of maximal disjunctions of sentences in I, ie., the =et 2 of all disjunctions
of seatences in B such that it we add any other sentence in 3 to the disjunction. the result is
implied by r. Formnally, & cousists of all sentences of the form oV« - -V oy, where each o, is in I,

T béolV-“Vok,
and if ¢ is any sentence in £ distinct from all the o;’s, then

TlEoV---VaorVo.

We now show that if we delete the seutences in R from the flock 8 = {S}, one by one, in any
otder, the resulting fock S’ will be equal to {S — £}, and similarly deleting R from T = {T} will
result in {T -- £}. We prove this for 8, and an analogous proof holds for T.

Since no sentence in L is implied by 7, every ¢ in & can be extended to a maximal disjunction
oVo, V-V that is in the set R. After deleting this Jdisjunction, we get a flock of theories,
none of which can contain any of the sentences o, a4, ..., ¢. Therefore after deleting all of the
sentences in £ from S we get a Hock S’ of theories, cach of which must be a subset of § — L.

We now show by induction on the number of deletions that the result is a singletor Hock, consisting
of one theory that is a superset of § — Z. The basis for the induction is the initial flock 8. We
now show that if we have a flock consisting of one theory that i3 a supersct of § - L and a subset
of § and we delcte a sentence in the set R {rom it, we get a singleton flock that also consists of
one theory that is a superset of § — ¥ and a subset of S.

Suppose that we have such a flock consisting of the theory §’' and we delete from it a seutence
g V- Vag of R. Let &~ {oy,...,04} = {a,...,a,,}. Since oy V -+ Vay is maximal, r implies
oy V- Vo Ve, fur 1 <1< m, and consequently —a; inplies gy V.- Vo Vorforl <i<m.
Suppose that {r,exy,...,,n} implies oy V -+ -V o, theu r implies oy V-V sau, VoV Vog.
But then it follows that 7 iinplies oy V- - - Vo - contradiction, But r implies S --E by definition and
S’ is a subset of 8,30 (8" -T)U{ay,...,tm} does not iply oy V- Vo, Thus §'—{o,... .0k}
is consistent with ={oy V- Vo). It follows that the result of deleting o4 V- -V ag from {S'} is
{S' = {m\....,01}}. This completes the induction and shows that the result of deleting R from
S={$}is8 =8-L

By the dcfinition of T, we have r = § — T, and therefore 7 implies the conjunction of all the
sentences in § —X. Since 7 is not logically equivalent to any conjunction of a collection of scutences
in S, it follows that § - T |£ 7. Therefore, there must be a model M of § - B that iz not a model
of . Then M is a model of §'. However, sinee rinin T — 3, M is not a model of T'. Tt follows
that 8 and T azre not equivalent forever under deletions.

We show by induction on the number of updates that we always have
(VS € 8"} (3T’ € T')(S' covers T' AT’ cov:rs '), (1)
where 8’ and T/ are the flocks we get from S and T by performing some updates. By our

assumption, Condition 1 holds at the beginning, when both Hocks are singletons.

Assume that Coundition 1 holds after some insertions and deletions.  We have to show that it
continues to hold after deleting a set of sentences . The argument for inscrtion is similar and is
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left to the reader. We shall use S! and T! for the locks before the deletion, S? and T? for the
flocks afterwards.

Let 82 be a theory in the flock 8. We first show that there is somne theory in T? that covers
S?. DBy the defiuition of deletion, S* must be a maximal subset of some theory St in the Hock
S! that does nnt imply any sentence in E. By the inductive hypothesis, there is a theory TV in
the Hock T such that St covers T, aud T covers 8. Let a; be any sentence in the theory §2.
Since % is a subsct of S and T covers S, there are sentences 7y, ..., Tim, in T! such that
O =Ty N ATipn, .

Let A be the set of all these 7', for all o, in §%. We claim that A does not imply any sentence
in X. Assume otherwise. i.e., A k= a, for some ¢ in E. Since cach o; in $2 implies all the
corresponding 1% in A, we have §? | A, and therefore §? k= o, a contradiction. Therefore
A does not imply any sentence in ¥ and can be extended to a maximal subset of T! with this
property. Call the maximal subset T2, Since A covers $2, T? also covers §2. We shall now show
that S? covers T2, thus completing the proof.

Let 7 be any sentence in T2, We have to show that it is logically equivalent to a conjunction of
sentences in §2. Siuce §! covers T! and T? is a subsct of T, there are aq, ... ,04 in S! such that

T=a; A Aok, (2)°

We know that T? [= §2, since T? covers S2. We also know that T? k= 1 = oy, for cach o;. If
some o; were not in §2, the fact that $2 is a maximal subset of S not implying any sentence in
£ would entail that 8% U {o:} implies some sentence 0 € T, But then T? J= 0, a contradiction.
This shows that each o; is in §2, qnd therefore 5?2 covers T2.

NMow let M be a model of some theory 8’ in the tlock S’. By Condition 1, there is some theory
T' in the flock T', such that S’ covers T'. This implies that M is also a model of T'. Thus every
nmodel of §' is also a model of T'. Similarly, every model of T' is also a model of S’ §

Example 4: The flocks {{A. B, A A B}} and {{A, B}} are cquivalent forever. The flocks {{A, B, AV B}}
and {{A, B}} are not equivalent forever. If we delete A and then B, we get {{ AV B}} from the first flock
and {0} from the sccond one,  §

For athitrary flocks we only have a sufficient condition for equivalence forever.
Theorem 8: Let S and T be two flocks that satisfy the couditions
(VS € S)(IT € T)(S covers T A T covers S) (3)
and
(VT € T)(38 € S)(T covers S A S covers T) (4)
Then 8 and T are equivalent forever.
Proof: Sce the proof of (6) = (2) in Theorem 7. §
Remarks:

1. By Theorem 6 we can replace *S covers T in this theorem by the condition “for every subset of
S, there is a logically equivalent subset of T.”

2. The above conditions are not necessary for equivalence forever. For example, it is shown in [Ku]
that the two Hocks

S = {{A.B,A= B},{4.4:=D},{B,A = B}}
11




and

T={{A,A=D}{B.A =1L,

are equivalent forever even though they do not satisfy Conditions 3 and 4..
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